por Aubin Arroyo
Estudiar algunos fenómenos de la ciencia y las matemáticas nos permite entender que el equilibrio no es estático, más bien una armonía dinámica y compleja por la que el caos se asoma.
En casi cualquier contexto, mantener el desorden no requiere ningún esfuerzo extraordinario: basta con que el tiempo pase, y con él la vida cotidiana. Por el contrario, se necesita energía para ir en su contra, y con cualquier descuido, el desorden vuelve a tomar el control.
Para adentrarnos en las matemáticas del equilibrio, podemos imaginar un experimento mental sencillo: vamos a colocar gotas de agua sobre la superficie perfecta de una esfera situada frente a nosotros. No importa en qué lugar depositemos la gota, ésta se quedará suavemente, adherida a la superficie, siguiendo la línea de un meridiano, hasta detenerse en el punto más bajo de la esfera: en el polo sur, con una única excepción: el polo norte. Si colocamos la gota de agua exactamente sobre el polo norte, ésta se quedará en equilibrio, inmóvil, de la misma manera que si la colocamos en su antípoda. Estos dos puntos especiales son los puntos de equilibrio del experimento, aunque de naturaleza diferente: en el norte el equilibrio es inestable, pues cualquier imprecisión al colocar la gota hará que se deslice irremediablemente hacia el sur. En cambio, el equilibrio en el polo sur es estable.
En las esculturas cinéticas de Alexander Calder el equilibrio también es estable. Podemos mover sus partes y soltarlas en diferentes posiciones, pero, el perfecto balance entre pesos, formas y palancas en su estructura, obliga al móvil a regresar a una posición de equilibrio.
El equilibrio no debe ser estático. La evolución del sistema solar nos sugiere que los ocho planetas orbitan alrededor del Sol en un equilibrio dinámico. Si bien las posiciones de los cuerpos celestes están cambiando continuamente, se repiten, a lo largo de los años, de manera periódica. Sin embargo, las ecuaciones que describen dicho movimiento requieren casi 50 variables, y demostrar matemáticamente que la configuración actual del sistema solar es estable, es un problema que aún no tiene respuesta. De hecho, al considerar el problema con tan sólo tres cuerpos, hay situaciones en las que aparece el caos, en la forma del “efecto mariposa”.
El efecto mariposa es un fenómeno que fue descubierto en la década de los setenta por Edward Lorenz, Margaret Hamilton y Ellen Fetter, al estudiar un modelo simplificado de las ecuaciones que modelan el clima; sorprendió a la comunidad en su momento, ya que evidenció una falacia bastante popular. Ésta consistía en concluir, a partir del hecho de que con condiciones idénticas se obtienen los mismos resultados, que con condiciones similares también se debían esperar resultados semejantes. Dicho de otra manera: es posible que pequeñas diferencias en las condiciones iniciales de un sistema puedan provocar resultados imprevisiblemente diferentes; y esto, incluso en un modesto sistema con tan sólo tres variables.
Ahora sabemos que existe un objeto (matemático) que atrae a todas las trayectorias del sistema de Lorenz y en el que el comportamiento caótico es la regla. Este objeto, que curiosamente tiene forma de una mariposa, es conocido como el Atractor de Lorenz y representa un equilibrio estable del sistema. Más aún, verificamos que, entre los sistemas modelados con tres variables, la existencia de estos extraños atractores, y, por ende, estos equilibrios caóticos, es bastante común. El Atractor de Rössler es un ejemplo más de esto.
Imaginemos otro experimento con agua. En un recipiente con agua fría, agregamos un poco de agua caliente. Idealmente, es posible plantear las ecuaciones del movimiento de todas las moléculas de agua dentro del contenedor, aunque la situación es muy compleja. En un litro de agua hay 30 veces más moléculas que la cantidad total estimada de estrellas en todo el universo conocido. Las matemáticas son exactas, pero no es exagerado asumir que el movimiento de cada una de estas moléculas sea caótico. Sin embargo, unos instantes después de haber hecho la mezcla, en medio del desorden que involucra a todas esas moléculas chocando entre sí, se alcanza una situación de equilibrio dinámico: un litro de agua tibia.
La estrecha relación con la naturaleza en la Antigüedad clásica no es un tema menor para entender la inspiración. El campo como espacio de conocimiento y la escritura como actividad intelectual estaban unidos por asociaciones culturales más complejas que denotan una forma de entender el arte muy distinta a la perspectiva moderna. Por ejemplo, la escritura bustrofedónica es una de las primeras formas de escritura documentadas en la historia de Occidente. Esta técnica implica redactar la primera línea de izquierda a derecha y la siguiente en sentido inverso. Este patrón no es más que una imitación de los surcos creados por los bueyes que aran la tierra. De ahí que su etimología se componga de bous (buey) y strophe (giro), literalmente “el buey que va y viene”. La conexión entre arar y escribir es una invención fascinante de la cultura griega pues nos invita a pensar que arar fue probablemente la primera forma de hacer poesía, y en medio del cultivo de la tierra, llegaron las primeras formas de la inspiración.
Quizás la lección más profunda de este episodio sea que los secretos más íntimos de la inspiración residen en las sencillas bondades de la vida rústica: en el susurro sereno de los arroyos, en el movimiento de las hojas al viento y en el esfuerzo honesto del trabajo del campo. Si cada surco es una línea del poema que nos dictan las Musas, tal vez lo que nuestro mundo necesita con más urgencia sean más pastores que, al igual que Hesíodo, recorran las praderas con sus rebaños, bajo cielos despejados de azul intenso, atendiendo a las verdades eternas que la naturaleza nos canta en verso.
Aubin Arroyo, Ciclo límite, 2024. Cortesía del autor.
Las matemáticas son exactas, pero no es exagerado asumir que el movimiento de cada una de estas moléculas sea caótico.
Aubin Arroyo, Efecto mariposa II, 2024. Cortesía del autor.
El equilibrio no debe ser estático. La evolución del sistema solar nos sugiere que los ocho planetas orbitan alrededor del Sol en un equilibrio dinámico.
Aubin Arroyo, Atractor de Rössler, 2024. Cortesía del autor.
Aubin Arroyo, Efecto mariposa I, 2024. Cortesía del autor.
Aubin Arroyo es doctor en Matemáticas por el Instituto Nacional de Matemática Pura y Aplicada de Brasil. Investigador en el Instituto de Matemáticas de la UNAM, Unidad Cuernavaca, especializado en sistemas dinámicos y visualización matemática. Sus trabajos, que fusionan arte y matemáticas, han sido exhibidos en espacios culturales como el Centro Cultural Kirchner en Argentina, Museo de Bellas Artes en París y Universum en México. Además, coordina el Museo Virtual de Matemáticas, donde impulsa formas innovadoras para la divulgación de las matemáticas.